Glycogen content and contraction regulate glycogen synthase phosphorylation and affinity for UDP-glucose in rat skeletal muscles.

نویسندگان

  • Yu-Chiang Lai
  • Jorid Thrane Stuenaes
  • Chia-Hua Kuo
  • Jørgen Jensen
چکیده

Glycogen content and contraction strongly regulate glycogen synthase (GS) activity, and the aim of the present study was to explore their effects and interaction on GS phosphorylation and kinetic properties. Glycogen content in rat epitrochlearis muscles was manipulated in vivo. After manipulation, incubated muscles with normal glycogen [NG; 210.9 +/- 7.1 mmol/kg dry weight (dw)], low glycogen (LG; 108.1 +/- 4.5 mmol/ kg dw), and high glycogen (HG; 482.7 +/- 42.1 mmol/kg dw) were contracted or rested before the studies of GS kinetic properties and GS phosphorylation (using phospho-specific antibodies). LG decreased and HG increased GS K(m) for UDP-glucose (LG: 0.27 +/- 0.02 < NG: 0.71 +/- 0.06 < HG: 1.11 +/- 0.12 mM; P < 0.001). In addition, GS fractional activity inversely correlated with glycogen content (R = -0.70; P < 0.001; n = 44). Contraction decreased K(m) for UDP-glucose (LG: 0.14 +/- 0.01 = NG: 0.16 +/- 0.01 < HG: 0.33 +/- 0.03 mM; P < 0.001) and increased GS fractional activity, and these effects were observed independently of glycogen content. In rested muscles, GS Ser(641) and Ser(7) phosphorylation was decreased in LG and increased in HG compared with NG. GSK-3beta Ser(9) and AMPKalpha Thr(172) phosphorylation was not modulated by glycogen content in rested muscles. Contraction decreased phosphorylation of GS Ser(641) at all glycogen contents. However, contraction increased GS Ser(7) phosphorylation even though GS was strongly activated. In conclusion, glycogen content regulates GS affinity for UDP-glucose and low affinity for UDP-glucose in muscles with high glycogen content may reduce glycogen accumulation. Contraction increases GS affinity for UDP-glucose independently of glycogen content and creates a unique phosphorylation pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents.

Insulin and contraction regulate glucose uptake and glycogen synthase (GS) via distinct mechanisms in skeletal muscles, and an additive effect has been reported. Glycogen content is known to influence both contraction- and insulin-stimulated glucose uptake and GS activity. Our study reports that contraction and insulin additively stimulate glucose uptake in rat epitrochlearis muscles with norma...

متن کامل

Effect of insulin and contraction on glycogen synthase phosphorylation and kinetic properties in epitrochlearis muscles from lean and obese Zucker rats.

In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lo...

متن کامل

Contraction activates glucose uptake and glycogen synthase normally in muscles from dexamethasone-treated rats.

Glucocorticoids cause insulin resistance in skeletal muscle. The aims of the present study were to investigate the effects of contraction on glucose uptake, insulin signaling, and regulation of glycogen synthesis in skeletal muscles from rats treated with the glucocorticoid analog dexamethasone (1 mg x kg(-1) x day(-1) ip for 12 days). Insulin resistance in dexamethasone-treated rats was confir...

متن کامل

Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle.

The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents an...

متن کامل

Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity.

c-Jun NH(2)-terminal kinase (JNK) is highly expressed in skeletal muscle and is robustly activated in response to muscle contraction. Little is known about the biological functions of JNK signaling in terminally differentiated muscle cells, although this protein has been proposed to regulate insulin-stimulated glycogen synthase activity in mouse skeletal muscle. To determine whether JNK signali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 293 6  شماره 

صفحات  -

تاریخ انتشار 2007